
Dear Dr. Use Case:
What About Function Points and Use Cases?

by Leslee Probasco
Rational Software Canada

Note: This is a summary of a recent
discussion on the chat_rup forum.
My thanks to the main discussion
contributors: Davyd Norris, Pan-Wei
Ng, and John Smith.

Dear Dr. Use Case,

Recently a customer asked me the
following question: "If we could
estimate the functional complexity of
a use case (e.g., hard, medium, or
easy), is there a way to then
estimate the number of function
points those use cases might have?"

Of course, I had a little trouble with this question. My gut reaction was
that use cases and function points do not play in the same space (or, at
least, they "play the game" differently). Have you ever dealt with this
issue? Does Rational have any documentation on using function points
versus use cases?

Please point me in the right direction.

Signed,
Pointless About Use Case Estimations

Dear Pointless,

At first glance, estimating use cases (UCs) using Function Points (FPs)
might seem like comparing apples with oranges, because we work so hard
to avoid functional decomposition with use cases. Function points rely
heavily on the physical layout of the system (for example, numbers of
tables and fields) and are therefore predominantly data driven. The goals

jprince
Copyright Rational Software 2002

jprince
http://www.therationaledge.com/content/aug_02/t_drUseCase_lp.jsp

of the two methods have some obvious similarities; as with UCs, FPs are
defined from a user perspective. The International Function Point Users'
Group (IFPUG, at http://www.ifpug.org/) defines an FP as "ýmeasured
from a functional, or user, point of view. It is independent of the computer
language, development methodology, technology or capability of the
project team used to develop the application." But that's where the
similarities end. To compare the two methods directly, you would have to
base your UC grading on the number of tables, functions, and so on, as
per the IFPUG standard.

The Rational Unified Process® (RUP®) contains a paper by John Smith
called "The Estimation of Effort and Size Based on Use Cases," which looks
at some important techniques for estimating development effort and
includes an estimation framework based on use cases. This framework
considers the idea of use-case level, size, and complexity for different
categories of systems. Along with other approaches, it discusses a Use-
Case Point (UCP) method based on Function Point Analysis (FPA),
referencing Gustav Karner's 1993 M.Sc. thesis on this topic (written while
Karner worked at Objectory AB, under the supervision of Ivar Jacobson).

Using Karner's Estimation Technique

Several folks at Rational have been using Karner's technique for a number
of years now, with good results. Sun and IBM have also publicly posted
that they use this technique and have revised the "fudge factors"
(described below) based on their experience; in addition, the technique
has been documented in several books. The technique's main benefit is
that it can be performed in your head from a use-case model survey (i.e.,
very early in the lifecycle, with very low precision), before the use cases
have even been written, provided you have some idea of how many
scenarios are contained within each use case (I always include a list of key
scenarios in my brief use-case description).

Basically, Karner's technique is similar to FP techniques in that you:

1. Count key aspects of your requirements to form an unadjusted
point count.

2. Use several sets of questions about your team and their
environment to create a fudge factor.

3. Multiply your original count by the fudge factor to come up with an
adjusted point count, which then translates into a person-hour LOE
(Level of Effort) estimate.

Karner proposes using a fudge factor set very similar to the FP method
factors but with slightly different weightings, and he proposes 20 person-
hours/UCP for LOE estimates. By looking at Actors and use cases for input,
you can derive a point count as follows:

1. Rank Actors as simple (1 point), average (2 points), or complex (3
points):

❍ Simple: a machine with a programmable API

❍ Average: either a human with a command line interface or a
machine via some protocol (no API written)

❍ Complex: a human with a GUI

2. Rank use cases as simple (5 points), average (10 points), or
complex (15 points):

❍ Simple: fewer than 4 key scenarios or execution paths in the
UC

❍ Average: 4 or more key scenarios, but fewer than 8

❍ Complex: 8 or more key scenarios

3. Calculate unadjusted use-case point (UUCP) count, a fudge
factor, and an adjusted use-case point (AUCP) count.

For the system under scrutiny, add up all the points to get the
unadjusted (UUCP) count.

Then, multiply by the technical and environmental fudge factors to
get the adjusted (AUCP) count.

Note: These counts are COCOMO1-like; when using this approach
with COCOMO, use the unadjusted count (based on the assertion
that UUCP has the same "weight" as unadjusted function points,
which are fed into COCOMO).

4. Convert the totals from Step 3 to an LOE estimate based on
calibrations of your team/organization. Use 20 person-hours/AUCP
as a start. Note: The folks at Sun report that in their experience the
rate should be closer to 30 person-hours/AUCP; I have found it's
somewhere in the middle, but highly organization dependent.

Step 1 above gives straightforward definitions for ranking Actors, but for
UCs (Step 2) you need to apply discrimination to determine what
constitutes a "key scenario." A key scenario in this case is the major way a
use-case instance can be executed. For the most part, this would
correspond to a major alternate flow, but not always. It could be that
several alternate flows combine into one key scenario, or that a particular
exception flow is very complex and so becomes part of a key scenario. The
instruction in Step 2 also assumes that your use cases are leveled (with
respect to level of detail) in similar ways to other projects. As mentioned
in the RUP, a midsize project of about 10 developers over 6-8 months
should have about 30 use cases. This fits with the idea that an average UC
has 12 UCP, and each UCP requires 20-30 hours. That means a total of
240-360 person-hours of effort per use case. So 30 use cases would
require approximately 9,000 staff hours (10 developers for 6 months).
Note, however, that a very large project with 100 staff for 20 months
would NOT start with 1,000 use cases (pro rata), because of the level
issue.

It is important to make sure the UCs are not too decomposed, and,
equally important, not too high level. Make sure you are dealing with a
system use case, not a business use case. The test question I ask is: "Can
the key scenarios be realized by collaborations of 7ý2 classes? "This

applies to the analysis level; there could be several more classes when
you look at a fully elaborated design-level collaboration. If the number of
classes starts to explode, and you start to aggregate the classes into
subsystems, then your use cases may be at a different level. Vastly
different numbers of use cases will skew your results one way or another,
but the method can be recalibrated as described above (by reapplying the
estimation to similarly leveled use cases) to take this into account for each
organization's style.

Estimates for Simple and Complex Systems

Using Karner's technique to estimate effort for simple and complex
systems (as shown below) yields a range of values that correlate well with
empirically based figures given in the RUP of about 150-350 hours per use
case.

● Example: Simple System
The simplest system (UC rank = 5) would be a human initiating a
simple use case driven by a command line interface (Actor rank =
2). Based on the formula specified in Step 3 above, this would give
a UUCP count of 2 + 5 = 7 points. Using the formula in Step 4, at
20 person-hours per UCP, this yields about 140 person-hours.
Note: A typical fudge factor for a new team would add between 10
and 20 percent to the effort estimate.

● Example: Complex System
A complex system (UC rank = 15) would be a human initiating a
complex GUI-driven (Actor rank = 3) use case; this would add up to
18 UUCP or about 360 person-hours.

Do It in Your Head

As you can see, you can apply this technique in your head as you walk
into a project. I find it particularly useful when I get thrown into a problem
project headfirst. I do a quick mental check of how many people should be
on the team and where in the schedule they should be.

Others have calibrated the technique for their teams with very good
results (search the Sun and IBM developer sites to see papers on the use
of UCPs). The key point, however, is that with very little effort, you can
use this technique to get a very early gross estimate. And it will be just as
accurate (or inaccurate) as any other method you could use at this early
stage in the project.

The best way to use the technique is to do a quick calculation and then
move on to more effective methods of estimation, such as actually doing
some useful work with your team and seeing how long it takes. Your initial
estimates can then be calibrated against these findings and refined as you
move further along.

Compensating for the Technique's Deficiencies

Most of the problems I have seen in understanding and applying Karner's

UCP technique revolve around evaluating the complexity of use cases, or
rather, defining what is a key scenario. For example, should a use case
that allows me to do CRUD (Create, Replace, Update, Delete) be
considered as 1 UC with 4 key scenarios, or is it actually 1 use case with 1
key scenario, as the other scenarios are so similar? When such questions
arise, I turn to Larry Constantine's idea of an "essential use case." In this
context, essential does not refer to the crucial use cases in your system,
but rather to the essence that defines what each use case is about. You
should be able to look at a use case and determine which scenarios shape
its very essence, as opposed to those that fill out and complete it. (See
Larry Constantine and Lucy A. D. Lockwood's book, Software for Use2, for
a further discussion of what constitutes an essential use case.)

Another problem I have with the UCP technique is its vagueness about
how many use cases you will have and how granular they should be.
There are plenty of debates about what constitutes a use case, and how
much it should be refined. For an appropriate use-case count, I typically
go by "gut feel" and averages I have cultivated over the years, based on
my own and others' experiences. The RUP says that an average IT project
(business, not technical) of about 6-8 months and 10-15 staff will consist
of somewhere around 30 use cases, and what I see in practice confirms
this. One of the largest projects I worked on was a 4-year, 300-person
project consisting of around 280 use cases (FP estimates of this project
put it at around 9,000-14,000 FPs!).

With respect to the issue of use-case granularity, the smallest useful use
case I have seen was only a half page in length, and the largest was more
than 120 pages! Before you start yelling, this huge use case was actually
very simple: It had a main flow that was 2 pages long and 50 alternate
flows that started and ended at exactly the same points. Basically, the use
case documented the management of company rules and restrictions, and
there were 50 or so different types of rules a user could choose from;
average reviewers read the 2-page main flow and then picked a couple of
rule types that interested them. During development, the rule types were
prioritized, and a few new rule types were added in each iteration (in fact,
some low-priority rules never did get implemented).

Yet another problem I have with Karner's technique is that estimates
change based on the type of project. For example, the GUI for a Web
application causes related Actors to be ranked as complex, as would the
geographic mapping GUI in a command and control (C2) project.
However, it could be argued that the internals of a Web application are
based on well-known component infrastructures (such as .NET or J2EE),
so its implementation would be trivial compared to the extremely complex
inner workings of a C2 system. In this situation several things come into
play. Compared to a Web application, a C2 system will have many more
use cases, and each of these will tend to have more key scenarios than
Web application uses cases; this increases the UCP for C2 systems. In
addition, the technical and environmental complexity of a C2 system
greatly increases the fudge factors for the project, making them much
higher than those for a corresponding Web application.

Beyond Early Estimates

Although the early estimates you get with this technique can give you a
good start, the most important thing to remember is that they are only
gross estimates. As you proceed with the project, you need to:

● Factor your own experiences into the mix.

● Start refining your figures as soon as you have more information.

Once you have an Analysis Model available, it is possible to identify
boundary, control, and entity classes, or, even better, design subsystems.
You can estimate the effort required to implement these by using
analogous figures from past projects.3 (At this level of analysis detail, you
can also start employing the techniques presented in a paper entitled "The
Estimation of Effort Based on Use Cases"4 by Rational's John Smith, or use
well-known techniques such as those in COCOMO II.5

On the other hand, rather than coming up with a better way to nail down
costs before you start the project, perhaps you should spend most of your
effort on changing the organization's/team's underlying attitude, so you
can avoid premature estimation in the first place. Premature estimation is
a very nasty condition that leads managers to commit the team to
unrealistic budgets, which results in everyone on the project becoming hot
under the collar, resources being spent before completion, and
requirements that are only half satisfied. It is possible and potentially
useful, however, to make estimates at any time, provided you recognize
the attendant error bounds on your estimate. Also, the project manager
should -- if required to make budgetary projections-- either provide for
contingencies or establish a scope management regime that will prune
functionality to fit the budget. This is the real world, after all.

Hope this helps.

Usefully yours,
Dr. Use Case

Notes

1 COCOMO is the Constructive Cost Model, originally developed by Dr.
Barry Boehm and described in his classic work Software Engineering
Economics, published in 1981 by Prentice-Hall.

2 Larry L. Constantine and Lucy A. D. Lockwood. Software for Use: A
Practical Guide to the Models and Methods of Usage-Centered Design.
Addison Wesley, 1999.

3 See Joe Marasco's article on "Commitment" in the May 2002 issue of The
Rational Edge.

4 Available online at
http://www.rational.com/products/whitepapers/finalTP171.jsp

5 See http://sunset.usc.edu/research/COCOMOII/.

For more information on the products or services discussed in this
article, please click here and follow the instructions provided.
Thank you!

Copyright Rational Software 2002 | Privacy/Legal Information

